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j I. -INTRODUCTION

L 1.1 Ob'ect and Scope

&h' j fhe development of a systematic

numerical procedure for determin3*ngthe displacements, strains, and stresses

within a plane continuum w erein certain regions have been strained beyond an

elastic yield limit. Such a procedure should make possible the observation

of the development of the stress and strain patterns around regions of high

stress intensity, s

ceRa-ti-eoads.

The procedure is restricted to plane, static problems; and the

example problems are further restricted to plane strain conditions. The pro-

cedure itself is applicable to plane stress problems if the relations between

stress and strain for plane stress conditions are substituted for those of

plane strain. The material of the continuum is considered to be isotropic

and elastic-perfectly-plastic and the problems are solved for continuously

increasing external loads. Unloading from a plastically strained state is

not considered.

The numerical procedure is essentially a relaxation technique

applied to a discrete phys'ical model composed of suitably arranged stress

points and mass points. Plastic yielding and flow in the solid is charac-

terized by the corresponding yielding and flow of the stress points of the

model. ntroduction of the discrete model reduces the problem of the

continuum with an infinite number of degrees'of freedom to a problem in

particle mechanics with a finite number of degrees of freedom. The primary

advantage of such a technique is that it makes possible the solution of

'V
*1
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problems not tractable by ordinary mathematidal analysis, particularly

problems involving partial loadings and complicated boundary conditions. The

basic disadvantage of the discrete model approach is its very finiteness--

stresses and displacements are defined only at a finite number of points.

Hence frequently the finite model can furnish only a rough.quantitative

measure of the true but unknown solution in the continuum. To gain some notion

of the accuracy of the model used in this investigation, a problem in plane

elasticity for which there is an analytic solution is solved by using the

model and the results compared to the analytic solution.

Once the level of external loading has been raised to a sufficiently

high level, the more highly stressed regions of the continuum begin to yield,

or flow plastically. The initiation of yielding is determined by the Mises-

Hencky yield criterion. Thereafter, yielded regions are assumed to obey the

plastic stress-strain relations postulated by the Prandtl-Reuss theory. Two

examples of problems wherein plastic flow has taken place over a finite region

are included to demonstrate the application of the numerical procedure.

The entire procedure for handling plane problems of contained

plastic flow in elastic-perfectly-plastic continua has been coded for use on

the IBM 7090 digital computer. Only the two numerical solutions mentioned

above are included in the thesis; an extensive investigation of the various

problems of interest in contained plastic flow falls outside the scope of

this work.

1.2 Historical Notes

This brief review of the literature is by no means intended to be

complete. Only a few of the more important publications related to the present

study are discussed. Several of these references (6), (8), (15), (22)1 contain

1 Numbers in parentheses refer to corresponding entries in the Bibliography.L
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extensive bibliographies or footnotes through which more detailed access to

the literature may be obtained.

The idea of replacing plane elastic continua with discrete models

began to attract researchers' interest in the early.1940's--about the same

time that Southwell (19) (20) developed efficient and practical relaxational

techniques for the solution of highly complex systems. It is not at all sur-

prising that the development of finite models should have awaited more

efficient methods of computation, since by their very nature solutions de-

termined with the use of models involve systems with a large number of

simultaneous equations. Hrennikoff (10) and McHenry (13) were perhaps among

the earliest of those who introduced "frameworks" or."lattice analogies" to

solve problems in plane elasticity. Using hexagonal and square patterns as

the basic module in the discrete model, Austin (3) and Dauphin (5) made

informative comparisons of the model solution to the exact analytic solution

for several problems in plane elasticity. Newmark (15) gives a good dip s-

sion of the use of models in several areas of structural analysis.

More recently, there has been a renewed interest in the development

of models; this is partly prompted by more efficient computational devices.

The advent of high-speed digital computers has induced many analysts to seek

discrete models suitable for digital computation. The work of Clough (4)

and Gaus (7) is typical of the model approach now being adopted in order to

solve continuum problems on computers. It is interesting to note that none

of the writers above make any mention of attempts to extend their models

beyond the elastic range. Schnobrich (18) has indicat&d that considerations

for future extension into plastic behavior influenced the selection of his

model, though his work presents only elastic results.

The scientifip study of the theory of plasticity seems to be much

older than any serious study of finite models, for it extends back at least
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to Coulomb and his study of yielding in soils in 1773. Any number-of readable

texts in the elementary theory (8), (9), (16), (17) are available, though the

presentation here follows most closely that in Prager and Hodge (17) and

Hoffman and Sachs (9). The only successful numerical solutions of problems

in contained plastic flow known to the author are those presented by Allen

and Southwell (i) and Jacobs (11). Their solutions are obtained by a rather

tedious manual relaxation technique which yields values of the stress function

from which the stresses are computed.

In summary then, it appears that both the theory of plasticity and

the theory, of models have attracted the efforts of able researchers, though

there have been few, if any, attempts to apply the theory directly to a

discrete model. Accordingly, it is the purpose of this investigation to

develop a numerical procedure for solving problems of contained plastic flow

with the use of a discrete model.

1.3 Notation

The following notation has been adopted for use in this thesis.

x direction of axis

y direction of axis

z direction of axis (perpendicular to the plane of analysis)

u displacement in x direction

v displacement in y direction

Th displacement in horizontal direction

?.,v displacement in vertical direction

E Young's modulus

V Poisson's ratio
E

G shear modulus = E2-iv
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K bulk modulus =

k yield stress in simple shear

S T total stress tensor

S S spherical stress tensor

SD deviator stress tensor

ET total strain tensor

ES spherical strain tensor
, ED

E deviator strain tensor

"s mean normal stress = 1 (ax +a + a )

s x normal component of SD in x direction = a - sSx x

s normal component of SD in y direction a - s

sz normal component of S in t. direction = a z-

e mean normal strain = ' (C + z + )

e normal component of ED in x direction = E - e

e xD

e e normal component of ED in z direction = c - e

e principal normal component of' stress deviation a - 1 e

sI 2 principal normal component of stress deviation.= aI - s

s s3 principal normal component of stress deviation = a 3 s
e- s3 principal normal component of stressn deviation = E e3

t eI principal normal component of strain deviation =• l2 e
e 2  principal normal component of strain deviation =2 - e

! e3 principal normal component of' stra.in, deviation = 6iw -e

first invariant = sI + s2 + s3

second invariant =I (2 + s2 +s)

third invariant = s3 s3)

W work performed by stresses during a plastic distortion
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F axial force component at a stress point

S shear force component at a stress point

X body. force per unit volume

Y body force per unit volume

I moment of inertia of a unit width of the reinforcing frame

A cross-sectional area of a unit width of the reinforcing frame

a x element of the total stress tensor

a element of the total stress tensor
y

a element of the total stress tensor

xzT element of the total stress tensor

ay element of the total stress tensorxz

- yz element of the total stress tensor

C2  principal normal stress

a2 principal normal stress

a 3 principal normal stress

E X element of the total strain tensor

ay element of the total strain tensor

z element of the total strain tensor

7 element of the total strain tensor

i i element of the total strain tensor2 xy

17 element of the total strain tensor

1
2 y4 element of the total strain tensor

El principal normal strain

6•2 principal normal strain

E 3 principal normal strain

" X. factor of proportionality between stress and strain rate,
horizontal or vertical distance between mass points
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Sdistance along x or y~axis between mass points

a el level of external load at which first yielding begins

f flexibility coefficient

P concentrated external load

i,1



F
I.I. -DESCR.IPTION OF THE. MODEL

2.1 Criteria for Selection of a Model

Historically, there have been at least two distinct criteria for

selecting a finite mechanical model to replace a continuum. Hrennikoff (10)

and Clough (4) both demand equality of deformation between model and continuum

under similar loading conditions- It is interesting in this regard to quote

Hrennikoff (10).

It is now possible to formulate the basic principle
governing determination of the framework pattern. The
necesasary and sufficient condition for equivalence of
infinitesimal framework and solid material is equality
in deformability of the two...

Hrennjýkoff. s application of this cfiteriohTis, questi6niabl•, .sihe sevel> --of Hig

simple framework patterns deform as does the continuum only if Poisson's ratio

has the value 1/3. Michell (14) shows, however, that at least for simply

connected regions the values of the elastic constants do not affect the compu-

tation of the stresses if the boundary conditions are specified by loading

conditions rather than by displacement conditions. Nevertheless, any criterion

which restricts the value of a material constant to a specific value cannot

be completely satisfactory.for treatment of the most general problems.

A second criterion that is sometimes used in the selection of a

model was mentioned by Newmark (15) and attempted by Gaus (7), and was

explicitly proposed by.Ang (2) in the development of the model which is used

in this thesis. The criterion is that there be a mathematical consistency

between the finite equations governing the behavior of the model and the dif-

Sfferential equations governing the behavior of the continuum. By this is meant

that the equations for strains, stresses, equilibrium, and compatibility which

are derived directly from the model should be the same as a set of finite

difference equations of the corresponding differential relations governing the

-8-
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continuum. If this requirement is met the requirement of equal defomability

of a model and the corresponding continuum will automatically be satisfied,

and no restriction need be placed on the value of Poisson½s ratio or of any

other elastic constant.

2.2 Description of the Model

The model used in this investigation possesses all the requirements

of the second criterion cited above. The essential characteristics of the

model are shown in Fig. 1, wherein a square grid has been superposed on the

continuum. The mass of the continuum is concentrated at the intersections

of the grid lines. Each of the mass points is connected through stress points

to the neighboring mass points. Three components of stresses and strains are

defined at each stress point (two perpendicular axial components and a shear

component). Displacements in the continuum are defined only at the mass

points while stresses and strains are defined only-at the stress points.

Modifications of the model to include a stiffened rectangular opening are also

shown in Fig. 1.

There are two important advantages of the model configuration

described above. First, all elements of the strain tensor and the stress

tensor are defined at the same point. This is an important characteristic

of the model, especially in extending its use to problems of plasticity.

*Second, horizontal and vertical boundaries of the model contain only mass

points. Thus boundary conditions given in terms of either external tractions

acting on the mass points or prescribed displacements of these mass points

can be applied with equal ease.
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2.3 Relation of the Model to Finite Difference Equations of the-Continuum

The material presented in this section follows closely that given

by Ang (2). For purposes of illustration the following notation is used.

Superscript letters refer to stress point locations. Subscript letters x

and y refer to the directions of the axes. Subscript numbers refer to mass

point locations. Displacement components in the x and y-directions are given

by u and v, respectively. Sign convention is that established by Timoshenko

(21).

The components of the strains at a typical stress point "4" are

defined, with reference to Fig. 1, as follows:

a u_5_-_3
x

a v 53-v44 (1)
Ey 5 1

a u 53-u44 v 54-v43
! xy = -- - -

These strains, which are derived directly from the model, are identical to

the finite difference expressions for the differential strain-displacement

relations of the classical theory for plane continua under small deformations:

E - u

x 7-

-6aV (2)

ýu 6v

The equation of equilibrium, in the x direction, for a typical

interior mass point at P43" is (see Fig. 2)



(Fax- Fc) + (Sb ' Sd) ,2(3)

where X is the body force per unit volume, The volume of a parallelepiped

of unit thickness and area % is considered concentrated eat each mass

point, If the thickness of the model is taken as unity in the z direction,

"forces at the stress point "a" are obtained from the stresses as follows:

F A a
x x 2

a a 5F - (4)
y y 2

a a a
xy xy 2

Using.Eqs, (4) in Eq. (3), the following equation of equilibrium, in terms

of stresses, is obtained;

aa c b d
x x X Y * + X = 0a)

A similar equation is obtained in the y direction:

b' d a c
a -0 a r (5b4 " 8 , ' + aJ a • + Y o = 0b )

{ These equilibrium equatio~ns, (5a) and (5b), are identical to the

finite difference expressions for the differential equations of equilibrium

governing the corresponding continuum;

X'+ + X = y (6a)

-+ -t +Y=0 (6b)
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L The strains in the model will necessarily satisfy the compatibility

relation, since strain compatibility is essentially a requirement placed on

the three components of strain in order to insure that the three strain

components correspond to a physically, possible displacement configuration.

The model deals directly with displacements, and the strains are defined

directly in terms of these displacements. Hence, it can be expected that the

strains derived from the displacements of the model will identically Sqtisfy

the compatibility condition,

It is also possible to express the equations of equilibrium in terms

of displacements. This is done below for a linearly elastic solid in plane

strain. Similar relations exist for plane stress conditions. For this

purpose it is necessary to express the three force components at the stress

point "a" in terms of displacements, as follows:

Fa E u54-u43 + v v4 F

x (l+v)(1l-2v) (-v) + j 2

a E. F...v)53 44  V "5-u3 2)

F - _" ++- 7y -~v (1~V(-2v) l54u1

a E ru5-u 4.4 +v 5-v -5

Eqs.. (7) are essentially Hookeh's stress-strain relationships for plane strain.

__ Substitution of these and similar relations for the forces originating at the

other stress points into Eq. (3) results in the following equation of equi-

librium in the x direction, in terms of displacements:

E [ u54 -2u +u3)

2-1_v)_54 43 32 ) +-(:1v) (:]-2v) •2

U 52 u '.2 +

(-20 (v53-v42)- v44v3 X 0 (8)
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A similar equation exists for equilibrium in the y direction. Note that this

Sequation is identically the same as a finite difference equation for the

differential equation of equilibrium, Eq. (9), governing the continuum.

I2
F (l+v) (1N2v) [1) 2i +'~v X =y0+(=)

2.4 Boundary Conditions

In general, boundary conditions (for either continua or discrete

models) can be of two types: either the forces acting along some boundary

or the displacements on the boundary are prescribed. As pointed out earlier,

either type of condition can be imposed on the model. A few examples are

given below to indicate how boundary conditions are prescribed for the model.

For greater flexibility and ease in programming, an extra line of

mass points has been included on each of the four sides of the rectangular

model, as indicated in Fig. 1 by dotted lines. Thus if the continuum being

simulated is to be ten % high and eight % wide (demanding a grid of eleven

rows and nine columns), there will actually be thirteen rows and eleven

columns in the complete description of the model. Suppose that the continuum

is known to possess symmetry about a vertical axis through a column of mass

points. The boundary condition on the right edge of the model (see Fig. 1)

is specified as follows:

u i6 = 'i4
Si :l, 2, .°, 6 (10)

vi6 = ui4

[ If an external load is to be applied to the top surface of the

Scontinuum, the model will have equivalent concentrated loads applied at the
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second row of mass points, and the extra top row of mass points will be

neglected completely. If it is desired to hold the base of the continuum

fixed against displacement,-the bottom row of extra mass points is simply

given a zero displacement.

In problems for which the model is being used to simulate an

infinite half-space, the problem of what boundary conditions to impose on

the left-most column of extra mass points arises. For vertical loadings

which are symmetric about the center line, it has been assumed that the

horizontal displacements of this left-most column are zero and that the

vertical displacements of this left-most column of mass points will be equal

to the vertical displacements of the column of mass points immediately to

the right of this boundary column. When these vertical and horizontal motions

are resolved into displacements in the x and y directions, the boundary con-

ditions become

U il 12 (ui2+v i2)
i = ,2 o•6 (ii)v (U. + v.2

vi (u2 i2+ vi 2 )

These examples indicate the manner in which boundary conditions

are prescribed for the model. A variety of practically significant condi-

tions can be conceived, and several different sets of boundary conditions

were actually investigated during preparation of the numerical examples. An

extensive treatment of the effect of various boundary conditions on the stress

and displacement patterns is beyond the scope of the present work.

2.5 -Modification of the Model to Include Interior Rectangular Openings

An example of the adaptability of the model approach to structural

analysis is given in the problem of determining the stress pattern within a
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plane solid around a rectangular opening, which opening may or may not be

I reinforced. In the general case, it is supposed that the opening is

reinforced. If the opening is to be a cavity only, the modulus of elasticity

of the reinforcing material is set equal, to zero.

The reinforcement, if any, in the continuum is replaced in the model

by a system of moment and axial springs. As shown in Fig. 1, the moment

springs are located at the mass points, and the axial springs span from mass

point to mass point in either a vertical or a horizontal direction. By means

1 of the moment springs, shear forces due to moments in the reinforcing continuum

can be simulated; axial springs simulate the direct tensile or compressive

forces in the reinforcing continuum. Tensile forces in the axial springs are

I taken as positive. Sign convention for positive moments is basically dictated
t

by the requirements for positive shears arising as a result of these moments.

This sign convention is shown in Fig. 3.

The vertical or horizontal shearing forces acting on each mass

point (depending on whether the mass point is on a horizontal or vertical

reinforcing section, respectively) can be calculated from the differences in

the moments acting at three consecutive mass points. Until a moment spring

begins to yield, the moment can be computed directly from the displacements

(Fig. 4) as follows:

N1 - EI2 u()
I15  F2X [(u34+v34) - (u35+v3) 3 6+v36)] (2

where E is the modulus of elasticity of the reinforcing material, modified

[ for plane strain, and I is the moment of inertia of a unit width of reinforce-

I ment. After a moment spring has reached its yield limit, it is assumed to

hold the yield moment, even though the rotation of the section may increase

I considerably.
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d r nThe vertical or horizontal axial forces acting on each mass can be

I determined as the algebraic difference of the axial springs acting on each

side of the mass point. Until an axial spring yields, the force in a single

axial spring can be computed from the displacements (Fig. 4) as follows:

F 15 = -AE r(u36-v 3 6 ) - (u 3 5 -v 3 5 )] (13)

where A is the cross-sectional area of the reinforcement? E is the modulus

of elasticity of the reinforcing material, modified for plane strain con-

ditions. After an axial spring has reached its yield limit, it is assumed

that the axial force maintains this yield level regardless of the values of

the surrounding displacements.

Once the horizontal and vertical forces acting on a mass point as

a result of the reinforcement are determined, they are resolved into x and

y components and handled in the same way as the forces in the rest of the

solid.

It is evident that a mass point which lies on an interior opening

will have forces acting on it that are different from the forces acting on

a general interior mass point. It is also evident that the forces acting on

mass points which lie on the opening will vary depending on whether the mass

point is on the top, bottom, side, or corner of the opening. For this reason

a set of operators has been developed which computes the forces acting on a

mass point, given the location of the mass point.

T
p!



III. CONSTITUTIVE BELATIONS FROM THE TBEORY OF PERFECT PLASTICITY

3.1 General Remarks on the Theory and Its Limitations

Any constitutive relationships of the theory of plasticity may be

divided into the following three parts:

(1) stress-strain relations for the elastic region,

(2) yield criterion to define the initiation of yielding,

(3) stress-strain relations for the plastic region.

These three major divisions of the theory will be discussed in turn, after

the associated assumptions and limitations are listed and after a set of

notation that will be useful in the discussion of the theory is introduced.

There are three main assumptions underlying the theory of perfectly

plastic material used in this investigation. These can be stated as follows:

(1) It is assumed that the Mises-Hencky yield condition

accurately determines the beginning of yield. General

considerations of isotropy and symmetry can furnish only

the general form of the yield condition. Beyond this,

any yield condition is a hypothesis which only tests can

f justify.

(2) It is assumed that there is no permanent volume change. This

assumption, justified on the basis of experimental evidence

for metals, leads to the result that the plastic strain is

equal to the plastic deviator strain.

L (3) During plastic flow, it is assumed that the deviator strain

rate tensor is proportional to the instantaneous deviator

stress. This is the familiar Prandtl-Reuss postulate.

-17-
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I In addition to these three main assumptions, it is possible to list several

1 other restrictions on the theory:

(4) The material must be isotropic. This condition is used

{ in developing the general form of the yield condition,

(5) There is no work hardening, and the material follows the

stress-strain diagram of Fig, 5 when subjected to simple

tension or compression.

(6) No unloading occurs, Once a stress point has yielded, it

remains yielded under successive increments of external

load.

(7) Time effects of loading, such as creep, are ignored.

(8) Displacements are small so that the small deformation

theory of elasticity applies.

3.2 Definitions and Notation

The following definitions and notation are introduced for the

purpose of describing the pertinent constitutive relationships used in this

work.

x xy xz

Total Stress Tensor S- 5  = y a (14)Sxy y yz (4

xz yz z

s 0

S
Spherical Stress Tensor S 0 s 0 (15)

0 0 s
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[
s T -
x xy xz

D
Deviator Stress Tensor = S x s (16)

xz yz z

where

s ; mean normal stress = a (a +)

sx = normal x-component of S = a - sx x

D
s, s= normal y-comppnent:,of S = a - (18)

s = normal z-component of S = a s

With these notations, it is obvious that

ST = SS+ SD (19)

% + +S = +0 + 3s = ( 20)
sx + S y + sz = a x+a +az-3s 0()

Principal normal stresses are designated by 01, a2, a3, (1)

Principal normal components of the stress deviator are

Ss2 = 2 S (22)

3 3

A completely similar notation exists for strains.

- 7 1.

x 2 xy 2 xz

Total Strain Tensor ET (23)
xy y 2 yz

2 xz yz z

V



S~-20-

e 0 0

S
Spherical Strain Tensor E 0 e 0 (24)

0 0 e

e -2ex 2 xy 2 xz

Deviator Strain Tensor ED 1 (25)'Y y 2 Yyz

1 e
2 xz 2 2yz

where

e =mean normal strain = (E + e + E (26)z3 x z

e ex = normal x-component of ED = Ex " e
ey = normal y-component of ED = ey - e (27)

D=Ie = normal z-component of E = - e
y Z

With these notations it is obvious that

E = E + ED (28)

e + e =E x + e + E - 3e =0 (29)
x yy

Principal normal strains are designated as El, e2 • 3 (30)

Principal normal components of the strain deviator are

11eI=eI - e

e 2 =E 2 -e (31)

S3 E 3 e
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3.3 Elastic Stress-Strain Relations

In the elastic range the relationship between the elements of the

stress and strain tensors is assumed to be that of Hooke's law, It is con-

venient to express this linear relationship in terms of the elements of the

deviator stress and deviator strain tensors as follows:

s = 2Ge s = 2Ge s = 2Ge1x x y y z z(12 (32)
.xy = GY xz = G7xxz yz =y GYyz

a + a + a=z K(Ex + c + z) (33-)
x y z x y z

where

G = E (34)

K = 3(-2v)(35)

Eqs. .(132)( pah bei dxpressed;moire ..concisely. as

SD 2GEv (36)

Note that Egqs. (32) or Eqs. (36) are not six independent relations, since

addition of s + s + s = 0 gives an identity. Accordingly, Eq. (33) is

needed to give a complete statement of Hooke's law.

3.4 Yield Criterion

A yield criterion can be defined as a condition defining the limit

of elasticity under any possible combination of stresses (8), The following

{f considerations of isotropy and symmetry show what the general form of the
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yield criterion must be. The Mises criterion is then presented and reduced

for the plane strain condition.

Since Hooke's law is presumed to be valid in the elastic range, the

strain at the very first instant of plastic deformation is uniquely determined

by the stresses. Thus for this very first occurence of plastic straining,

the yield condition can be written as a function of the stresses alone.

f(a x, aya C cý' Tx 'yz) = 0 (37)

Since the material is assumed to be isotropic, the value of f must not change

if the coordinate axes are rotated. In other words, f must be an invariant

I -of the stress tensor. The form of f can be further restricted by noting that

mere hydrostatic pressure does not produce appreciable plastic deformation in

metals (8). Therefore f is restricted to be an invariant of the deviator

stress tensor.

Let the deviator stress tensor be referred to its principal axes.

( The following three linearly independent stress invariants are then chosen.

J 5+5 +3
1 1 +s2 3 x 3

222 1 2 2 (38)
IT (+S+ (sx±sy+s,) + T + + T(8
22 1 2 3' +'xy xz yz

Now any invariant of the deviator stress tensor can be expressed in terms

V of these three linearly independent stress invariants (17). But f is an

I invariant of the deviator stress tensor. Therefore it must be possible to

express f from Eq. (37) in terms of J2 and J3

I F(J2, j2 ) = 0 (39)

I-

V
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The yield criterion which is used in this investigation is that

of Mises-Hencky and follows the general form above:

SJ2  
2 k 0 (40)

where k is the yield limit in simple shear. Note that this criterion 1.epends

only on J 2 " For equivoluminal plane strain conditions, Eq. (40) reduces to

S.-aY) 2-.+T 2  k2 = 0 (41)

2 xy

Eq. (4-1) the) yiled-ldYdoi•i&it•ion! Vcdtually,,usl'd in; the: ,model.,.,

3.5 Plastic Stress-Strain Relations

. In order to relate stress and strain in a material which is subý

, mitted to plastic flow, it is convenient to express the strain tensor in

terms of elastic and plastic components. Single primes will be used to denote

an elastic component, and double primes will denote a plastic component. Dots

will denote rate of change with respect to increment of external load.

I The essential nature of the relations between stress and strain

during plastic flow is contained in assumptions (2) and (3) of section 3.1.

The assumption that there is no permanent change of volume is expressed

mathematically by Eq. (42).

e" 1 (e" +E"+ s") = 0 (42)3 x y z

LThis implies that the plastic strain deviation is identical to the plastic

strain, or,

I' -- e" = elf e" = e" l (43)
x x y y z z
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Assumption (3) of section 3.1 states that during plastic flow the

deviator strain rate tensor is proportional to the instantaneous deviator

stress tensor. This is expressed mathematically by Eq. (44) below:

2G6 %s 2G6" Xs 2G6" Xs

(44)
G'" %'C GG2' %.T

xy xz xz yz yz

where % is a proportionality factor. Eqc. (44) -reinthke same form as

the elastic stress-strain relations given in Eqs.(32).

f The basic relationships which are assumed during plastic flow have

now been presented. It is now necessary to apply these relations, along with

F the yield criterion Eq. (40) and the elastic relations of Eqs. (32) and (33)

in order to develop the final relationships between the stress rates

(incremental stresses), strain rates (incremental strains), and the instan-

taneous stresses.

The plastic strain rates have been expressed in terms of stresses

i. by Eqs. (44). Similarly, the elastic strain rates are expressed in terms of

stress rates by differentiating Eqs. (32):

2G6' = 2G6' = 2G6' ="x x y y z z
Gý Gý Gý(.5)

xy xy xz xz yz yz

Combining the elastic and plastic strain rates gives the total strain rate.

2G6 = 2GA + 2G6" = s + %s
x x x x x

2Gey = 2G' + 2GC," = s + Xs
y y y y y

2G6 = 2G6' + 2G6'! = + Xs
z z Iz z z1G2'y = G~ý+ G"= i +%r(4-6)_ x xyy• •xy xy xy

SX Z XZ XZ XZ
G! = Go ' + Gz= i +r

xz xz xz xz xz

G~yz = Y = z yz + y'Syz
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i Note that these relations apply only during plastic flow, i.e., when

SJ2 = k2 and 2 = 0 (47)

In order to eliminate the proportionality factor X from Eqs. (46),

it is convenient to introduce the notation

i|W Sx~ +syyg z sz +xy~xy •xz~xz (yz8)
= + s e + T + (48)

Swhere W may be interpreted as the rate at which stresses do work during a

change of shape and to note that

J = sSx + s + s +s 2 i + 2t i + 2ry i (49)2 x y y z z xy xy xz xz yz yz (9

By multiplying the first three of Eqs. (46) by s, s ,s and the last three

of Eqs. (46) by 2TXY, 2.xz, 2 yz, respectively, and adding, there results

F. 2 2 2
"2GW = s + Xs + s + %s + s 6 + s 2

xx x yy y zz z

+ 2c i + 2%, 2 + 2r t + 2?T 2 + 2- + 2%,c 2
xy xy xy xz xz xz yz yz yz

= + %(s 2 2+ 2 2 + 2T 2

2  x y z xy xz yz

2 + 2%J 2  (50)

But during plastic flow,

J = k2 and 2= 0 (47)

Hence,

t 2G* = 2%k2  (51)

L and,

% GW (52)

Lk
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'Substituting this value of % into Eqs. (46), it is possible to

solve for the deviator stress rates, which gives the following;

6 = 2G( W_ s G(÷•-ý
x x 2k2 Sx) k2 XY

sy = 2G(6y - -L ) = G(x - 2L T) (53)
2kk2 xz

6z=2G(65 - s) { G(7 -4. W
z 2k2 yz ' k2 •yZ

To obtain the total stress rates it is necessary to add the deviator

stress rates from Eqs. (53) to the spherical stress rate which can be obtained

by differentiating.Eq. (33):

1 s = 3K6 (54)

Adding.:Eqs. (53) and (54) results in the total stress rates, as follows:

&a=s +ý=2G(4 - - s )+3K6 'x =G(x - 2
x x 2k2 X X k2

a =s+6=2G(6 --.Ws )+3K6 ' =G(7 -- f ) (55)
y y 2k 2 Yxz xz k2

& =s +ý=2G(ez - )+3K6 'yz=G(2yz k- Pyz)
zz z 2k2zy yz RY

Eqs. (55) give the desired relationships between the stress rates, strain

V. rates, and instantaneous stresses.

3.6 An Incremental Form of the Plasticity Relations for Application to

the Model

In general, the application of the plasticity relations to the model

is closely associated with the three stages of material behavior presented in

sections 3.3 through 3.5. The applications of Hooke's law and the Mises-Hencky

S.] yield criterion to the model are straightforward, since the strains can be
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computed from the displacements by relations similar to Eqs. (1) and the

) stresses (or forces) at a stress point can be computed directly from the

displacements by relations similar to Eqs. (7). Accordingly, the discussion

which follows is concerned with the development of an incremental form of the

Prantdtl-Reuss relations for application to the model.

Eqs. (55) are first reduced to an incremental form. Note that for

plane problems the number of relations is reduced from six to three.

Therefore,

At = As + A S

AU -- Ls + 'Ls (56)
ay Y •

A' xy = G(67xy k2 xy)

For:.plane strain conditions, Eqs. (53) are reduced to

ALs =2G(Ae -- TWs)
x x W2k2 x

As 2G(Ae -A (57)S
i Aýy : 2 y 2k 2 Sy) (57)

AW
Arc = G(A2X -_- •ixy )

IL and Eq. (54) becomes

As = 3Me = K(Aax+A' (58)

The incremental W becomes

LW sAe +sAe + sAe + T L7 (59)
xx yy z z xy xy

But

S = - (a +a ZI) (6o)

[ Where, for plane strain,

1•
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az = v (Gx + a) (61)

and during plastic flow

v 1-/2 (62)

Hence,

s + - (a + a + ) =0 (63)
z 2 x y 3 x y 2

Thus,

:i :a +a a -ai.s + a + ( x y x y

x x 3 x y2 (41 x +C; Y. -.sy CT y - 3a + a + .2- ) -- x - (64)

1 2E_ -
Se x = x - ( E x• + E y 3

x 3
12E -E

3y X y 3

2aE -L~ES= e x

y 
3

Substituting these values, Eqs. (64), into Eq. (59) yields an incremental AW,

which reads,

6W =a(Ac -As) +TL (65)

Using the expressions for AW, Aex, and s from Eqs. (64) and (65) in Eq. (56),

SAna becomes

if
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= 2G .3

a.• ( x ) ,A e A C y .) xy, ( ,x .

2k 2

+ K(Aex + AY) (66)

Collecting terms gives

Aa AEx4G 3K G. G x

L 3~a kE k2  2i X 3 k2 2
i+ % "e [ 2 3 K + ( - '

+ A y. ( x 2 (67)

Similar expressions are obtained for Ay and AŽTxy as follows:

. 2 Y
a /2 A=E[ -2G +.3K +G a a )2]

.- y +1-y 3 2 2

AE + 4G + 3iK G (r -ory) 2 ]

+Im.YL t  (4q 2"")] (68)

4 xV x [( -2•' +y,• (• •,

, 2

+ A7xy [G(l - 2- )] (69)

These last three equations are the incremental relationships with

which the incremental stress components in a plastic region are computed.
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These incremental stress components are added to the existing stress components

at a stress point to obtain the total stresses acting at a yielded stress point.

In order to compute the quantities4 x , 6IA7y which appear in

Eqs. (67) through (69), two sets of displacements corresponding to two con-

secutive load levels are required. One set of displacements is the set which

is being generated for the current level of external load; the other set is

that computed for the previous external load level. The quantities Uxj AC

L7x are computed as the differences in strains determined from these two sets

of displacements.

t.



IV. SYSTEMATIC RELAXATION PROCEDURE FOR DETERMINING DISPLACEMENTS

4.1 Preliminary Remarks

When a problem in continuum mechanics is replaced by a correspond-

ing problem in particle mechanics involving a discrete model,, the question

of how to determine the equilibrium displacements in the model arises.

Perhaps the most obvious solution is to write and solve the set of simultaneous

linear algebraic equations (equations similar to Eq. (8).) for the unknown

displacement components uiI and vio Such an approach has significant dis-

advantages, however. The. preparation of the equations, whether it be done by

hand or by an intricate program for the computer, involves a considerable

amount of labor. In addition, even with machines as large as the IBM 7090

the number of equations which can be solved by the standard library subroutines

is limited to about 150. And perhaps most important, the changes in the

coefficients for the displacements resulting from yielding of one or more

stress points are not at all easy to determine.

A more flexible and practical approach to the problem is the

relaxation procedure described below. Such an approach eliminates completely

the preparation of simultaneous equations, and can handle a very large

number of displacement components (of the order of several thousand). An

additional advantage of the relaxation method is the physical meaning that

can be attached to each step of the procedure. This is of considerable help

in determining plastic stresses and strains.

4.2 The Relaxation Procedure

The relaxation procedure used for determining the displacements

can be graphically summarized by means of the flow diagram presented in Fig. 6.

-31-



All mass points of the model are initially in equilibrium with zero displace"

ments and no external load. The first increment of external load is then

applied to the boundary mass points (or other specified mass points), thus

destroying the equilibrium of the loaded mass points. The following opera-

tions are then performed for each mass point of the model.

The forces acting on a mass point are determined as follows.

External forces acting on the mass point are given as a part of the loading

pattern applied to the model. Internal forces, originating at the stress

points, are determined uniquely in the elastic range from the displacements

surrounding the stress points by equations similar to Eqs. (7). After a

stress point has yielded, the force components at that stress point are

determined both by the surrounding displacements and the past history of that

particular stress point. Incremental plastic forces are determined from the

incremental plastic stresses given by Eqs. (67), (68), and (69). These

incfemental plastic forces are then added to the last set of equilibrium

forces at the stress point to obtain the current total plastic forces acting

at the yielded stress point.

*After the forces acting on a given mass point are determined, a

summation of all the forces acting in the x direction is made. In general,

this will result in a residual force which is an indication of the amount

by which the mass point is out of equilibrium in the x direction. The mass

point is then displaced through a small distance in the x direction equal

to the product of the residual and a flexibility coefficient.

Similar operations are performed for the y direction. This places

the current mass point in equilibrium,,though in general it will destroy the

equilibrium of surrounding mass points by a small amount. The procedure is

repeated for each mass point until every mass point has been moved once in
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the x direction and once in the y direction, thus completing one cycle of

relaxation.

After every relaxation cycle, each mass point is inspected to

determine if it is in equilibrium. If not, the relaxation process is repeated

until all mass points are in equilibrium to within a prescribed allowable

error. When all mass points are in equilibrium, then all the stress points

are inspected for yielding by the Mises-Hencky yield criterion, Eq. (41), and

the yielded regions are recorded. All the displacements and stresses for the

equilibrium configuration just obtained are also recorded. If desired, the

external load is given a new increment and the complete procedure is repeated

for each load increment in order to trace the development of plastic yielding

from one stress point to another. The following example demonstrates the

manner in which the computations are performed.

4.3 A Computational Example

Consider the elementary example shown in Fig. 7. Only mass points

"1431 and "53" are free to move; due:to symmetry about a vertical line through

these mass points, the u and v displacements at a mass point are equal:

Su43 = v43

u53 v53 (70)

Hence there are only two unknown displacements in the problem, u 4 3 and u 5 3 .

Using the material constants, dimensions, and loading shown in Fig. 7, it is

possible to write two simultaneous linear algebraic equations (similar to

Eq. (8)) for the elastic behavior of the system in terms of the two unknowns,

u43and u 53. Solution of these two equations yields

u 4 3 = v 4 3 = 1.010 x 10-3 inches

u 5 3 = v5 3 = .252 x 10- inches (71)
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Converting these displacements to elastic stress components by means of

Eqs. (7) and (4) gives

a a =-.7857 ksi am =-.2143 ksi
x x

a m
a =-.0714 ksi. a = -. Q714 ksi (72)Y Y

ta m
a =-.2143 ksi T =-.0714 ksi

xy xy

These values will now be used to measure the progress of the relaxation

procedure.

Before beginning the systematic relaxation procedure, it is first

necessary to convert external pressures to concentrated loads for application

at the mass points and to determine the flexibility coefficients for each

mass point. For example, if an external vertical pressure of 1 ksi is acting

on the top surface of the model shown in Fig. 7, the concentrated vertical

force acting on mass point "43"Uwhich arises from this pressure acting over

a distance of %/2 = 1/2 inch on either side of mass point "43", is

Pv = (1 ksi)(2 + 2)(J) = 1 kip (73)

where the thickness of the model is taken to be one inch. This vertical

force is then resolved into components in the x and y directions for applica-

tion at mass point "43":

P =•. 707 kip

P = .707 kip

The flexibility coefficient for a mass point is obtained from a consideration

of the effect of a unit force acting on the mass point. For example, a unit

external force of one kip applied in the x direction at mass point "43" is

resisted by internal force components acting at stress points "a" and "b."
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External Lo&d = 1 kip = -(F a + Sxy (75)

Expressing Fa and S in terms of displacements by means of equations similar
x xy

to Eqs. (7) and noting that all displacement components except u43 are held

fixed gives.

-u4 -u
(E -v)(- ) E (-ý ) (1 (1+v)(1-2v) 2- 1 8 2 (76)

Solving Eq. (76) for u 4 3 yields the flexibility coefficient in the x direction:

u - f 43= 4 l+v)(1-2v) (77)
43 x (3-4v)E

Because of the symmetrical arrangement of the force components acting on mass

point S43ý, the flexibility coefficient in the y direction is equal to f4

f 43 = f 43 = 4(l+v)(l-2v) (78)
y x k(3- 4 v)E

A similar derivation gives the flexibility coefficients for mass point "53":

53 f 53 2(l+v)(l-2v)
fy x v3-E (79)

If E and v take on the values 1000 ksi and 0.25, respectively, as shown in

) Fig. 7, then these flexibility coefficients become

f 43 = f 43 .001250 inches/kip- x y =
(8o)

S53 = f y53  = .000625 inches/kip

With these values for the concentrated external loads and flexibility

coefficients, it is possible to begin the relaxation procedure. The following

step numbers make reference to the flow diagram of Fig.. 6.

1{
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Step Operation

1 Set ' u '4 v 3  ' 53  = 0. Also set force components 0,

2 Apply the increment of external load to mass point "43".
I PX = •.707 kips

S P y= .707 kips

3 Begin with mass point "43".

4 No stress point has yet yielded, since all stress components

are initially 0 0. Go to 5b.

5b On the first cycle all force components are computed as

zero, since no mass point has yet been moved.

6 On the first cycle, only external forces are non-zero.

Hence,

F = PX +.707 kips

~Fy = P y = +.707 kips

7 New u43 =old u 4 3 + fx43 (F

u43= 0 + .00125 (.707) = .884 x 10-3 inches

Similarly,

v4 3 = 0 + .00125 (.707) = .884 x lo-3 inches

Note that these displacements of mass point "'43" destroy

the equilibrium of mass point "53".

8 The current mass point, "43", is not the last mass poant.

Go-to 9.

9 Take mass point "53", Got to 4.

4 Again no stress point has yielded, since yielding can occur

j] only after an equilibrium configuration has been reached.

Go to 5b.
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Stýe Operation

5b Force components at stress points "a" andr "b" are computed

from Eqs. (7), taking account of the evanescence of all

displacement components except u4, = v43' u5 3 = v 53. Note

that only those components acting on mass point "53" are

computed.

F a - E [c_,v) v53 V u431~
y (ltV)(l-2v7 - ,

= 1+1000 (1-. 25)(0) - .25(.000884)
(l+.25)(1-. 50)K 7

-. 177 kips

~a271+7 L 8

100025 K .21Fx Tl-+v ýl-2vý E5, b I

51 0 ) (1-.25)(0) .25(.000884)
(1+-25)(1-507

= - .177 kips

Sxy --2T-Uiv7 3 +

= 2(10.25) - .ooo884 + o Z= - .177 kips

Note that for the first cycle, mass point." 531' has not yet

been moved. Hence u53 = v 5 3 = 0 and all force components
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Step Operation

at "m'l and. "n" = 0. From considerations of symmetry, it can

also be concluded that

a b

a b

The equality of the shearing forces and the axial forces at a

stress point on this first cycle is purely coincidental.

6 'Following the sign convention of Fig. 2 for positive

forces,

LFx -S b . + S n +F,x -S x xy x

= + .177 + o177 + 0 + 0 = + .354 kips

i•FY - Fa - S b + F n + S m

F b xy y xy

+ .177 + .177 + 0 + 0 = +.354 kips

7 New u53 = old u 53 + f 43 (ZF)

Su53 0 + .000625 (.354) = .221 x 103 inches

Similarly,

v53 o0 + .000625 (.354) = .221 x 10-3 inches

Note that these displacements of mass point "53" destroy

the equilibrium of mass point "43"."

8 This is the last mass point and the end of the first cycle

of relaxation. Go to 10.

10 All mass points are not in equilibrium, since the displace-

ments u 5 3 and v 5 3 under step 7 above destroyed the equilibrium

of mass point "43". Hence there must be a second. cycle of
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relaxation, beginning at step 3. Note, however, that in bnly

one cycle of relaxation the displacement components have

attained nearly 90 percent of their final values.

2The operations listed above demonstrate the procedure for elastic

behavior. Suppose that a sufficient number of relaxation cycles has been

performed to bring both mass points to within an acceptable error in the

equilibrium equations. The following .discussion indicates how the yield

criterion is applied (step 11 of Fig. 6) and how the force components at a

yielded stress point (step 5a of Fig. 6) are computed.

To illustrate the application of the yield criterion, assume that

the yield stress in simple tension for the material is 35 ksi. Then the yield

Sstress in simple shear is

k2 0 y ield) 2= 32
"k 2 2 ) = N6 (81)

Applying the yield criterion, Eq. (41), to stress point "a" gives

2
(-.7856 + .0714) + (-.2142)2 - 306 < 0

(82)
0.174 - 306 < 0

and to stress point "m" gives

214 +.071)2 + (-.071) - 306 < 0

(83)

0.010 - 306.< 0

Obviously both stress points are far from yield at an external pressure of

only 1 ksi. Indeed, first yielding will take place at stress point "a" at

an external vertical pressure of
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' 06 1 ksi =42 ksi (84)

Note that this value of external stress is considerably greater than the

yield stress in simple tension or compression of 35 ksi assumed for the

material. This is characteristic of failure or yielding in two dimensional

stress systems, and will be evident again in the numerical problems presented

in Chapter V.

Until the load level has reached 42 ksi, all stresses and displace'-

ments increase linearly. When this elastic limit has been reached, the corre-

sponding displacements and stresses are 42 times those of Eqs. (71) and (72):

= v = 4.242 k 10-2 inches

543 53
Su53 = v53 = 1.058 x 10 inches

a m-x -33.00 ksi a = -9.00 ksix x

a m
C y -3.00 ksi a = -3.00 ksi (85)

a m
x = -9.00 ksi m = -3.00 ksi

These values are recorded, and are used to determine the total displacements

and stresses for the first load increment above the 42 ksi load level.

Suppose now that the load level is increased to five percent above

this elastic limit, i.e., to 1.05 (42) = 44.1 k~i.. As a first approximation

to the final displacements at this new load level, the displacements of

SEqs. (85) are also increased by five percent.

u 43 = v43 = 4.454 x 10-2 inches (86)

S-= 53= 1.1 x 10-2 inchesu5 v53

Note that two sets of displacements are available: the last set of equilibrium

displacements, Eqs. (85), and the current set of displacements, Eqs. (86)

I



(which in general are not compatible with the condition of equilibrium). These

two sets of displacements are necessary. in order to compute the incremental

plastic stress components according to the discussion in section 3.6.

In order to compute the incremental plastic stress components, it

is necessary to compute first the strains at the stress point "a", for both

Levels of external load, by Eqs. (1).

For load level = 42 ksi:

a u .04242
x = 1.414 -. 05000

a v53 .01058
y -- 7-4i4 = +.00749

u 5v43=.01058 - .04242xy 1. 414

= -. 02252 (87)

For load level = 44.2 ksi:

a .04454
x -1.414 = -. 03150

a t!.:0111
a4 1 4 = +.00786 (88)

a .01111-.04454 - -. 02364
_Y 1.414

The incremental strains in.Eqs. (67), (68), and (69) are obtained by

subtracting Eqs. (87) fromEqs. (88):

AZx = -. 03150 +.03000 = -. 00150

Sy = .00786 -. 00749 = +.00037 (89)

717xy = -. 02364 +.02252 = -. 00112

rx
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Before computing nox, 6a , and LXy , it is convenient to compute -the numerical

values for G and K:

E 1000
G 2-717v 2(1+.25) =40o

(90)
K O 1000 667

3(1-2v) 3(1-.50)

Note that instantaneous values of the stress components are required in

Eqs. (67), (68), and (69) in order to compute the incremental stress com-

ponents. For small increments in the external loading, the instantaneous

stresses are very nearly equal to the stresses at the last equilibrium

configuiration, Eqs. (85).

Substitution of Eqs. (85), (89), and (90) into-Eqs. (67), (68),

and (69) gives the following:

=a a = (-.00150) 4(4 )+3(667) - 400 (-33+3) 2

+ (-00037) [-2(400)+3(667) + 400 (-33+3)]

+ (- .00112) L400oo6 (-33+3)]

= -. 90 ksi

,,,ay = ( .00150) F-2(40°)+3(667) + 400 (-33+3)

y -i3 3076 2 J

+(.00037) [4(400)+3(667) - 30 (zL+) 2]
(91)

+ (-.00112) [30 29(.3+

=-.90 ksi

I



aX= .00150) _q (-9)(±)
t + oOOOT)I400

+ (.00037) 30 (-9)

1 2o
+ (-.00112) [400 (1

=0

Two important observations can be made immediately from inspection

of Eqs. (91). First, the stress components at the yielded stress point "a"

are not increasing linearly. Second, the stresses at the yielded stress

point "a" are increasing in such a fashion that the yield condition, Eq. (41),

remains satisfied. This is a consequence of the fact that the yield condition

is used to eliminate the factor of proportionality % in the Prandtl-Reuss

plastic stress-strain relations, Eqs. (44).

To obtain a first approximation to the stresses and forces at

stress point "a" at the load level 44.1 ksi, it is necessary to add the

incremental stresses, Eqs. (91), to the last set of stresses, Eqs. (85):

a = - 0a a
S= -90-33.00 = -33.90 ksi Fa = -23.95 kips

a = 90- 3.00 = - 3.90 ksi Fa = a 2-7 6 kips (92)
y y 2

a a a
= 0 -9.00 =-9.00 ksi Sxy =xy - 6.36 kips

Eqs. (93) correspond to step 5a in Fig. 6, wherein the forces acting

at a yielded stress point are computed. Once these "plastic" forces are known,

the relaxation technique proceeds in the same manner as before. For example,

summing forces acting on mass point "43" gives the result

LF = P +Fa+S b = +31.20-23.95-6.36 = +0.89 kip:x x x Xy (93)

S Fb+s a
F y = P y+F+SX = +31.20-23.95-6.36 = +0.89 kip



L-44-

Hence the second approximation to the displacement of mass point "43" is

obtained by. adding Eqs. (86) to the incremental displacements resulting

from the unbalanced forces of Eqs. (93):

I 43 = .0445 + .00125(189) .0456 inch

v43 .0445 + .00125-(.89) = .0456 inch

where .00125 is the flexibility coefficient, Eq. (77), for mass point "'

Accordingly, one observes that the displacements, as well as the stresses,

are no longer linear functions of the external load after plastic yielding

has begun.



I. V. THE NUMERICAL PROBLEMS

5.1 Problem 1: A Comparison of Theoretical and Model Solutions

Problem 1, shown diagrammatically in Fig. 8, is presented in order

to demonstrate the measure of accuracy obtainable with the model used in

this investigation. The theoretical solution is obtained from that given by

Timoshenko (21) for a single concentrated load acting vertically on the sur-

face of a half-space. To obtain the approximate theoretical solution for

the linearly distributed vertical pressure shown in Fig. 8, the effects of

seven concentrated loads, located symmetrically with respect to the vertical

[• center line, are superposed.

As an approximation to the semi-infinite half-space of the theo-

retical solution, the following boundary conditions are used for the model.

The left boundary is assumed to have a zero horizontal displacement and a

vertical displacement equal to that of the material spaced a horizontal

distance . from the left boundary. The lower boundary is assumed to be

completely fixed. The boundary on the right is established as a line of

symmetry. These boundary conditions are indicated graphically in Fig. 8.

It should be recognized that these boundary conditions on the left edge and

at the base of the model only approximate the true boundary conditions in

the half-space. Accordingly, exact agreement between the theoretical and

model solutions cannot be expected, especially in the regions near the

boundaries.

The basic solution obtained from the model is a set of displace-

ments and stresses in the x and y directions oriented as shown in Fig. 1.

t For presentation, however, all displacements and stresses are resolved into

horizontal and vertical components. Figures 9, 10, and 11 give these
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displacement and stress components for Problem 1. The displacement components

within a square refer to the displacements of the mass point located at the

upper left corner of the square. The stress components refer to the stresses

at the stress point located in the center of the square.

To facilitate comparison of theoretical and model solutions, plots

of the vertical stresses and displacements at various depths in the half-

space are given in Figs. 12 and 13, and a plot of vertical deflections at

the center line is given in Fig. 14. Note the very good agreement of the

two solutions for vertical stresses in Fig. 12. Only near the lower boundary

is there any observable difference between model and theory; this difference

it most likely arises from the different boundary conditions along the lower

boundary for the two solutions. The pattern of vertical displacements

(Fig. 13) appears quite reasonable, and the comparison of these deflections

at the center line with the corresponding theoretical solution (Fig. 14)

shows a good agreement in the pattern of the deflections, with only minor

discrepancies in the magnitudes of the deflections. Again, this difference

in the magnitudes of the deflections obtained from the model and from the

theory of elasticity is attributed to the differences in the boundary condi-

tions for the two solutions, particularly the condition along the lower

boundary.

5.2 Problem 2: Notched Bar Under Tension

As an example of a type of problem in contained plastic flow which

can be solved using a discrete model and a systematic relaxation procedure,

a bar with a long rectangular notch, or slit, is shown in Fig. 15. In the

finite model, the notch actually has a width of X, though for practical

purposes the notch may be thought of as having infinitesimal width. A
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uniform tension is applied at the upper edge of the bar, the left edge of

the bar being free of external stress. The bar is assumed symmetrical

about a vertical axis through its center and symmetrical about a horizontal

axis through the notch. Hence the boundary conditions, on the right and

lower edges of the bar are those of zero shear on the boundaries and zero

displacement perpendicular to the boundaries.

As mentioned earlier, the basic solution obtained from the model

is a set of displacement and stress components. However, once successive

sets of displacements are known, the stresses can be computed. Furtherit

has been observed that the general pattern of stresses does not vary. appreci-

ably as the level of external loading is increased, even though portions of

the material may be undergoing plastic flow. Accordingly, only the basic

solutions in terms of displacement components (Figs. 16-19) are given for

each load level above the load level which initiates plastic yielding. For

this elastic limit load level (a el) a complete set of stress components

is given in Figs. 20 and 21, and plots of the vertical stresses and vertical

displacements for various depths at this load level are given in Figs. 22

and 23.

In the discussion of problems in contained plastic flow, a very

useful concept is that of an "equivalent shear stress", defined as follows-

-a 2 2
Equivalent Shear Stress = (-T + T(95)

Note that this is actually the largest shear stress existing on any plane

passing through.a given point at which cx;ay, and 'T are defined. If this

equivalent shear stress is divided by the yield stress in simple shear, k,

the ratio represents the percentage of the yield capacity of the state of

stress at a given point. Figures 24, 25., and 26 present values of the

I.
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equivalent shear stress, expressed as a percentage of its maximum value k,

for three levels of external load: ael' i.46ael' and 1.58a el

It is of some interest to trace the development of the yielded

t •region as the level of external load increases. The first stress point to

yield is the one at the very end of the notch (Fig. 24). It is of signifi-

cance (Fig. 20 or 22) that the vertical stress component at this stress

point when yielding begins is 47.4 ksi -- considerably greater than the

assumed yield limit of 35 ksi in simple tension or compression. As,mentioned

previously, this is characteristic of yielding in two-dimensional stress

systems; the yield condition depends upon a combination of the stress

components rather than on the value of any single component.

To be strictly correct, the external load increments after this

first stress point has yielded should be applied in very small increments.

Initial investigations indicate, however, that the displacements and stresses

are very nearly linear between yielding of two successive stress points,

particularly if the yielded region is of small extent. Hence the next two

stress points were yielded by relatively large increments of external load.

At an external load level of 1.22ael, the second stress point,

immediately above the first yielded stress point, begins to yield. As the

load is increased to 1.46ael, a third stress point yields (Fig. 25). Note

that the yielding is not takingplace along a horizontal line at the waist

of the specimen, as one might at first be led to expect, but is progressing

vertically upward and. to the right. The material has now been highly enough

stressed so that only, a small increase in external load is necessary to

propagate the yielded region completely across the bar (Fig. 26). In problems

of this type which involve local concentrations of stress, the specimen, can

actually withstand a considerably greater external stress than that causing



initial local yielding. Figure 27 summarizes the progression of plastic

yielding at several levels of external load.

This pattern of plastic yielding shows remarkably good agreement

with results presented by Jacobs (11), who used a modified stress function

approach and a relaxation technique developed by Allen and Southwell (1).

As Allen and Southwell (1) have remarked' this type of plastic yielding may

indicate the mechanical behavior behind the type of fracture commonly known

as "cup and cone'." The first stages of failure may, involve slipping along

planes at roughly 45 degrees to the vertical. Eventually the tensile stress

across the elastic portion of the waist of the specimen becomes great enough

{ to cause a breakdown in cohesion, resulting in a horizontal tensile fracture

across the reduced waist of the specimen.

Figure 28 illustrates graphically that displacements are no longer

linear functions of the applied loading after plastic yielding has begun.

Load deflection curves are given for mass points located at "a", "b", and

"t"c" of Fig. 15. Mass point "a" is immediately above the end of the notch;

mass points "b" and "c" are at a horizontal distance %/2 from the vertical

center line and at vertical distances 5-1/2 % and 2-1/2 % from the horizontal

center line, respectively. Note that the load deflection curves differ,

depending on the location of the mass point, and that the load deflection

curve for the material within the elastic core at the center of the specimen

(mass point "c") remains nearly elastic.

5.3 Problem 3: A Partially Loaded Half-Space

As a second example of a problem in contained plastic flow, the

problem of a partially loaded half-space is shown in.Fig. 29. Such a problem

might represent the effect of a footing on soil, or a machine part bearing

against another part of much larger dimensions.
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The boundary conditions for the problem are the same as those for

Problem .1, and the elastic solutions, Figs- 30 and 34 through 37, is quite

similar to the elastic solution of Problem 1. Preliminary investigation of

plastic yielding under the triangular loading of Problem 1 indicates quite

different yield patterns for the two problems, however. It might be mentioned

at this point that the loading pattern shown in Fig. 29 purposely introduces

the linearly varying stress distribution at the left edge of the loading

pattern. This type of external stress distribution reduces significantly

the oscillation in displacements and stresses, which occurs in the model solu-

tion if the external stress distribution drops abruptly from a finite value

to zero.

The concept of an equivalent shear stress is again used as a

measure of the closeness to yield. Figure 38 shows values of this equivalent

shear stress as a percentage of its maximum value k for the elastic load

limit (01l) which initiates plastic yielding. In marked contrast to the

large increments of external load demanded by Problem 2 in order to yield a

second and third stress point, it was found that only. a small increase of

two percent of the elastic limit load was required to initiate yielding at

several other stress points. An increase of six percent (Fig. 39) in the

external loading.ael extended the yielded zone over a circular arc which

almost intersected the surface of the half-space. Figures 3033 give the

basic solutions in terms of displacements for each load level, and Fig. 41

summarizes the progression of plastic yielding at these load levels. This

pattern of plastic yielding under a partial load agrees very well with the

trajectories of maximum shear under a footing given by Jurgenson (12).

Note again (Fig. 36) that there are regions within the material

where a single component of stress (vertical stress immediately beneath the

I
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load, for example) can have a value considerably greater than the yield stress

of 35 ksi in simple tension or compression.

The non-linear relation of load and displacement at specific points

within the material is also evident in this problem. The load-deflection

curves for the three mass points "a", "b". and "c" of Fig. 29 are shown in

Fig..41. All three mass points are on the vertical center line; "a" is at

the surface, and "b" and "c" are at depths of 5% and 8% below the surface.

The surface mass point, "a", departs greatly from the linear behavior, since

it feels the cumulative displacements of all the material beneath. Mass

point "b" is located within the yielded zone and also shows a non-linear

behavior. Mas.s point "c" is beneaththe yielded zone and exhibits even less

than linear deflections. This seems to indicate that the increments in

external load are not being.transmitted directly through the yielded zone,

but rather are being carried around this zone by a redistribution of the

stresses.
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I VI. SUMMARY-AND CONCLUSION

The object of the thesis is the development of a numerical pro-

cedure for the solution of problems in contained plastic flow of plane

continua. To accomplish this, a discrete model is introduced to replace

the physical continuum. The equations governing the behavior of the model

are shown to be identical with a set of finite difference equations for the

differential equations governing the plane continuum.

The Mises-Hencky yield criterion and the Prandtl-Reuss stress-

strain relations for plattic straining are given, and a finite form of these

relations is developed for application to the model. A systematic relaxation

technique for the computation of displacements and stresses, within the model

is developed. The relaxation technique applies to both elastic and plastic

behavior, and is well adapted for use on large, high-speed computers.

Three numerical example problems are solved by means of the

relaxation procedure. The first example indicates the measure of accuracy

obtainable using the model. The last two examples illustrate the application

of the procedure to problems of plastic straining.

Results of the example problems indicate that the numerical pro-

cedure developed herein can be used successfully for the solution of a

wide range of interesting and practical problems in contained plastic flow.

-52-

L



VII. BIBLIOGRAPHY

1. Allen, D. N. de G., and Southwell, R. V.,."Relaxation Methods Applied

to Engineering Problems - XIV Plastic Straining in Two Dimensional
Stress Systems", Philosophical Transactions of the Royal Society of
London, Series (AT, Vol. 242, 1950.

0 2. Ang, A., "Mathematically Consistent Discrete Models for Simulating
Solid Continua'", in Computation of Underground Structural Response,
Compiled by A.oAng and N. M. Newmark, Final Report to the Defense
Atomic Support Agency, Contract No. DA-49-146-XZ-l04, June, 1963.

3. Austin, W. U., "A Framework Analogy for Plane Problems in Elasticity."",
M.S. Thesis, University of Illinois, 1946.

4. Clough, R. W., "The Finite Element Method in Plane Stress Analysis",
Second Conference on Electronic Computation, American Society of
Civil Engineers, 1960.

5. Dauphin, E. L., "Framework Analogies for Plane-Stress Problems in
Elasticity'7[; M.S. Thesis, University of Illinois, 1947.

6. Drucker, D. C., "Stress-Strain Relations in the Plastic Range--A
Survey of Theory and Experiments', Brown University ONR Report,
Contract Number ONR-358, 1950.

7. Gaus, M. P.,,"A Numerical Solution for the Transient Strain Distribu-
tion in a Rectangular Plate with a Propagating Crack", Ph.D. Thesis,
University of Illinois, 1959.

8. Hill, R., The Mathematical Theorof Plasticity, Oxford University

Press, London, 1950.

9. Hoffman, 0., and Sachs, G., Introduction to the Theory of Plasticity
for Engineers, McGraw-Hill Book Co., New York, 1953.

10. Hrennikoff, A., "Solution of Problems in Elasticity by Framework
Method'", Journal of Applied Mechanics, Vol. 8, No. 4, December, 1941.

11. Jacobs, J. A., "Relaxation Methods Applied to Problems of Plastic
Flow", Philosophical Magazine, Vol. 41, 1950.

12. Jurgenson, L., "The Application of Theories of Elasticity and
Plasticity to Foundation Problems,", Journal of the Boston Society
of Engineers, Vol. 21, 1934.

13. McHenry, D., "Lattice Analogue for Solution of Stress Problems",
Journal of the Institute of Civil Engineers, Vol. 21, December, 1943.

14. Michell, J. H., "On the Direct Determination of Stress in an Elastic
Solid, with Application to the Theory of Plates", London Mathematical1' Society Proceedings, Vol. 31, 1899.

-53-1[



I -54-

15. Newmark, N. M., "Numerical Methods of Analysis of Bars, Plates and

Elastic Bodies", in Numerical Methods of Analysis in Engineering,
j ed. L. E. Grinter, MacMillan. Co., New York, 1949.

16. Phillips, A., Introduction to Plasticipt, Ronald Press Company,1 New York, 1956.

17. Prager, W., and Hodge, P. G., Jr., Theory of Perfectly Plastic Soldds,
John Wiley, and Sons, New York, 1951.

18. Schnobrich, W. C., "A Physical Analogue for the Numerical Analysis
of Cylindrical Shells", Ph.D. Thesis, University of Illinois, 1962.

19. Southwell, R. V., Relaxation Methods in Engineering Science, Oxford
University Press, Lonaon, 1940.

V 20. Southwell, R. V., Relaxation Methods in Theoretical Physics, Vols. 1
and 2, Oxford University Press, London, 1946 and 1956-

1 21. Timoshenko, S., and Goodier, J. N., Theory of Elasticity, Second
Edition,,McGraw-Hill Book Co., New York, 1951.

I

L

ii



-5.5-

to 0
cc Pdr- 1

0 0 4.' t r4 f

\0 UNt

04

0
;4 t4:

00j UN C) r

(0~~~ 0- r ) ~
000

*14

0)i 0



-56-

I p43

'oS

M

0 P0



-57-

$4)

O0

C - D -L\f

r71i

E-4

M
H L!\p4 *% Lr\H

Ir,

tHo

to0



U -58-

IF
IP

UN'

IC'q

:00

$AAj ~+H

IC' Cki U.'

MA4



-59-

Lr

P~4



i Start

1* Set all displ. and
forces = 0

I Apply increment of
external load

Begin with first
mass point

yesl_ý!ý direct piontcigo

this mass point tyielded?

e irpComputi plastic putetolasspforces Corces

6p Sum fore ein x and
reor directions

7 Move mads point to Take next
Sequilibrium _position mass point

8o 7

yes Are all mass points no
• I in equilibrium?

Check all stresses
points for yielding and

I •" record yielded regions

'2Record displ, and'
i total stresses.

Stop

FIG. 6 FWw DIAGRAM FOR REiAXATION PROCEDURE



U
-61-

h P

/\ x

62 4

n "

IE G 00 ksi vAR 0F25
P : P y .707 kip

- FIG- 7 DIAGRAM FOR COMPUTATIONAL EXAMPLE



3%

-'---- ,x --

I C

E = 1000 ksi 111

V =0

= 1 inch
/.. o = 1lksi

/ / / / / i' / / /' ,, , / ,, ¾-'--

a 1 kei

on
Mass Points

FIG. 8 DIAGRAM FOR PROBLEM 1: A COMPARISON OF
THEORETICAL AND MODEL SOLUTIONS

II



-63-

a =1,00 ksi

' 167 279 352 487 550 708 760 940 98i 1191 1100 763 0
363 394 489 545 740 850 1169 1.359 1910 2332 3611 4435 '525

145 159 295 333 443 456 568 54o 618 461 3,51 123 0
•,:53 415 457 6o0 68o 929 1967 1484 1744 251o 3067 400 14068

95 16o 181 25• 252 328 280 330 2o4 17936 2510
36• 390 493 54ý 741 844 1161 1346 1866 2217 2ý23 3187 '3536

71 83 133 120 172 124 1,63 67 75 -35 -19 -44 0
348 413 452 594 671 911 ý.047 1421 1055 2106 2420 2841 '2810

25 55 39 73 29 60 -15 4 -83 -57 -95 -40 0
S358 382 481 535 714 814 1089 1255 1630 1833 2211 2300 '2480

12 -5 15 -24 -2 -63 -43 -114 -86 • -130 -79 -60 0
335 395 433 56 633 8• •55 1234 139 1700 1818 2040 12004

-21 -14 -49 36 -87 -71 130. -105 -149 -106 -106. -46 l
334 357 442 639 735 9.?3 "1051 1294 1408 1622 16506 1758

-22 -53 -49 -93 -83 -134 -115 -1•5 -122 -134 -82 -54 10
305 35.5 z8 8 7. 48 5 , 7 97, 1,071 125 3 1 ' 5

"" 33 1442 1

-42 -47 -85 782 -130 -114 '152 -1?? 446 -104 -91 -40 06
287 306 371 412. 1 58§. 7.PI 7ý8 948 1912 1134 1149 '12(k
-35 -67 -71 -18 -. 0l,3 -3.8 122 -144 -113-112 -75 -42 0

245 282 307 378 421 521 577 63 7 57 888 9.58 9

-43 -52 -68ý 85 -116 -107 -2430 -110 -116 -84 -6 -3
21-4 227 29,9 3 43 480 530 O15. 500 ý 723 '-755

-31 -55 -61 -87 -85 -107 7'95 r-105 -84 .78 -50 -29 0
163 185 200 240 2.4 319 359, 411 440 494 510 544 '536

-29 -36 -55 -5 -70 -81 -69 -70 -51 -41 -19 10
117 123 144 15 206 43 263 3. 315 343 34-6 359

-13 -24 -2 -3 -7 4 -1 -4 30 32 -20 -12 1059 66,: 70 841 51 108 1.17 135- 1,44 159 1.64 17 4 ,172

Fh x bcale Factor:

y

FIG. 9 HORIZONTAL A, VERTICAL DISPIACEME TS



ii -64-

vI

-4 6 -6 8 -8 11 -11 19 -6 18- 485 821'

6 -4 7 -5 11 -4 21 8 85 218 483 676'

-2 8 -2 12 24 20 68 130 276 424 556 I

10 1 1 4 7 26 26 61 95 178 270 374 435'

5 17 11 28 29 56 77 130 186 263 326 366 I

19 14 29 50 52 66 ".102 139 193 243 290 315i

17 30 30 48 58 85 110 150 187 228 260 278

31 31 45 53 74 92 121 150 183 213 257 250'

32 43 48 65 79 102 123 151 176 200 218 228

43 46 59 69 87 104 127 148 170 189 203 211

46 55 62 77. 90 109 127 146 165 180 192 198

54 58 69 80 95 110 127 144 160 173 182 188'

57 64 72 84 97 111 126 141 155 167 175 179

62 68 77- 87 99 112 126 139 151 161 168 172,

7 7 7 7 77 7

Sx Scale Factor:

-10-3 ksi

y

FIG. 10 VERTICAL STRESSES

LI



Ii6

v 1.00 1ksi
Vi

83 85 86 86 85 82 75 59 21 -96 -292-443
-1 0 0 03 12 2 92 93 67

59 58 56 52 44 32 10 -23 -91 -126 -119 -73
0 -2 .. 2 1 8 9 26 39 105 166 198 77

38 35 31 23 13 -- 4 -23 -59 -67 -63 -18 9
-2 3 3. 12 14 33 44 90 129 172 140 62

20 17 10 4 -8 -18 -38 -39 -42 -10 14 41,
3 3 14 16 33 42 74 97 133 132 109 38

6 1 -2 -10 -15 -27 -25 -29 -8 6 37 49,
3 13 15 30 36 60 74 102 109 110 76 30

-5 -7 -13 -14 -22 -19 -23 -8 0 25 39 53
10 12 25 30 48 57 .79 86 95 82 60 20

-12 -15 -15 -20 -16 -19 -8 -4 Ti 26 43 49
8 19 23 33 44 62 67 79 74 67 44 17

-18 -17 -20 -16 -19 -9 -8 7 14 32 39 47,
13 17 29 34 48 52 r, • g 50 35 i1

-18 -20 -17 -19 -11 -11 1 5 21 27 38 41
10 21 25 36 40 50 51 55 48 42 26 10

-20 -17 -19 -13 -13 -3 .0 12 16 28 32 37 i

13 17 26 jo 39 40 46 43 41 31 21 6

-16 -18 -13 -14 -6 -5 5 7 18 21 29 30,
10 19 21 29 31 37 36 37 31 26 15 6

-16. -12 -14 -7 -8 0 0 10 11 19 21 24,
12 15 22 24 30 29 32 28 27 19 14

-8I -11 -6 -8 -1 -3 4 3 10 10 15 15
.10 16 18 23 24 28 25 26 21 18 10 4

-5 -1 -5 0 -3 1 -1 4 1 5 4 5
"11 13 19 20 24 23 25 21 20 14 10 2 '

-,/ 7- / :-- / 7 / 7 I7 7 / / /

Sx Scale Factor:
10-3 ksi

FIG. 11 DORIZONTAL AND SHEAR STRESSES



I a =1.00 ksil

/0

d X/2 P!ksi

I =2.5% Model

Theory of Elasticit ksi

d 6 1.5x

.18
____ _____ ________ __ __ _ ___ ksi

I: FIG. 12 VERTICAL STRESSES AT VARIOUS DErPTHS,



v 1.000Is~

I'I
C- 

-0-

528

d 0=

(su ace)

- -

176

6d lO1

scale Factor:

10-5 %

FIG. 15 VERTICAL DISPIACETS AT VARIOUS DEPTHS



-68-

a= 1.00 ksi Centerline
V Deflection

Ii 1~528

I /
/

I Theory of
Elasticity

Model

0

I 010

Scale Factor: 10" >5

h

FIG. 14 DEFLECTIONS AT CENTERLINE VS. DEPTH
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II

t~ If

13 = 30,000 ksi

v =0.3

I• = 1 inch

a = 35 ksl
y
k2= 3o6 (ksi)~

11. 5%
b

- a
-on Stress

-Points

C on Stress
Ii Points

FIG. 15 DIAGRAM FOR PROBLEM 2: NOTCHED BAR UNDER TENSION

V

Vi
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aCf Cy 14.3 ksi7 -2 37 87843 s

2232 2637 1908 217,3 1 878 758 9337583 7638 7230 72,50 6798 :6-755 6422 6385 6261
2690 1911 26 15)40 1 6O h i 428 293.

73)48 7011 6987 6590 6493 '6121 6021 5798 5757

19-38 2-351 1619 186 I~~128ý 69%6i uiV68
6y67 67749 6.406 7284 5897 5-741 •43ý 5335 '5222

2 Egg6 -Z5 208 1357-3 53 6 915 ~0 2)
6482 ,6242 .6116 573. 5532 5169 4993 4776 4708

11 11 1209 664 6 %7 75
S6054 5975 56,42 5399 4990 736 4423 4267 4152

2322 1550 19 8 1314 I 5 6 871 3 230
5816 5612 5349 4923 4580 4179 3914 3686 3589

1494 2117 1384 1715 1105 1147 .44 519 83
S5624 5375 4994 4553 '4077 3675 333 3108 2993

2102 1290 1842 1176 i368 838 761 336 185

5453 5227 4677 4173 3552 31ý27 2733 2509 2381

37 1773 1026 148 07 2 94 368 44
5637 4954 4543 3736 3146 '2499 2145 1861 1789

I1402' 537 1-358 716 1002 -534 h41, 113 97
5365 5201 4165 3565 25!2 1942 1408 1292 1212

-139 774 -'17 884 359 ~ -13 60o .2
5887 4718 4598 3057 2125 1032 812 730 697

'190 =733 22 -857 -57 .297 -12o -97
5289 5325 3940 .76 1081 194 302 221 229 - ._I II I

h Scale Factor: I

106 inches

FIG. 16 OIZ=ONTAL AMI VERITICAI DhSPLA0ENTS

Ui
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1. 22 a 174kksi

2653 3350 2259 ; 2454 1753 1965 105 9 458
9324 9404 8891 8ý04 B362 8321 7903 7864 7708

3ý66 2261 ý823 1811 2150 1•19 1.31 456 427
9056 8625 86 p8 8110 8003 7037 7422 7142 7095

2 2294 2952 1905 2370 1419 1642 7839 8p0 16
8329 8j18 7888 77,49 7264 7082 670-3 6581 .6439

30807 15 1989 2593 16o -10o --3080 1• 259• 16 956 1077 11•0 400 3,78

7992 7688 7546 .7O69 6831 6373 6167 5892 5812

2047 2789 1T52 2256 1356 -5T 749 762 29
j 7459 7375 6957 6672 6157 5858 5459 5277 5129

2,51, 120 2511 53 1898 I5- 1$ 40 32

7179 6020 (6612 -6078 5.675 5162 4853 4554 4441

1753 2667 1615 2183 1281 1487 733 7o16 51
6933 6642 6168 5646 5043 4572 4120 3861 57o3

ý646 1503 23ý9 13 1769 -%4 1010 371 280
6735 6450 5.799 5168 4483 3874 3417 3101 2955

1088 -ý251 1115 1915 1033 1f239 564 509 30
6935 6133 5620 4666 3914 3155 2657 2331 2207

-1799 o2- 1760 785 1352 50 :590 128 16
"6635 6401 5185 4439 3208 2432 1805 1587 1496

.200 1053 -70 1209 %25 502 -33, 73 -40
7213 5865 5660 3860 2712 1404 1008 890 858

1340 192160 1-1084 163 -473 -196 0 -23
c-- 6563 6526 4941 4637 1552 348 31 294 272

I I I I

II h Scale Factor :

v x10-6 inches

L.-- FIG. 17 HORIZONTAL AND VERTICAL. DISPMAC•EINTS
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= 1.46 ai= 2 0 .9 ksi

3132 14008 2677 3313 2o88 2376 1204 1204 55

113141-11464 10797 10862 10165 10154 9618 9593 19393

4092 2670 3427 2149 ý604 1456 1606 -549 512
11033 10485 10503 9870 9772 918j 9066 'I8712 8662

2701 3589 2252 2875 1690 1987 942 987 24
10158 10151 9609 9468 8862 8661 8189 8049 7872

3751 2342 3152 1906 2372 1292 1439 488 451
9754 9375 9222 8635 8363 7799 7555 7216 7120

S2401 3 3 9 7  2068 2741 1599 1887 .911 921 44
9107 9010 8507 8174 7550 7190 6703 6477 6296

3563 2 3056 1823 2309 1281 1387 508 412
8763 i5467 8098 7470 6979 16362 5972 5608 5461

2041 3260 1904 2661 1549 1818 1914 861 74
8484 8115 7588 6951 6245 5649 5104 14758 4564

3268 1755 2866 1627 2169 1203 1252 4821 34-8
8183 7925 7119 6423 5567 4849 4235 3849 3637

"1269 2802 1384 2360 1279 1539 744 649 41
8486 17461 6977 5795 4957 3963 3355 2873 2717

2327 .736 2236 936 1680 806 757 162 i176
7993 7888 6332 5638 4099 3183 2260 1961 1830

S-188 •465 0 1630 442 600 -58 82 -63
8831 7088 7049 4764 3730 1908 1251 1099 1042

1673 -991 440 -1104 602 -628 -302 -215 -37
GL - - -7865 8065 6004 5844 2183 458 428 342 335

Scale Factor:
y 106 inches

LVx

FIG. 18 HORIZONTAL AND VERTICA1 DISPLACEYOTTSI
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1.58 Ce1 22.6 ksi -

- - - p
3369 4-340 2894 3570 2279 2542 134o -1264 102
12362 12584 11811 1194o 1114o 11173 10561 -0557 10328

4443 2882 3706 2338 2797 1609 K703 1638 511
12.106 11478 11540 10823 10755 10091 9•36 19588 9541

2909 j895 2443 3102 1857 212.5 1063 1028 73
1.1104 11147 10543 10419 9746 9546 9022 8879 8682

4084 2531 3415 2083 2551 1442 1527 579 444
10705 10290 10142 9502 9220 8604 8343 7971 7866

2588 3697 2249 2964 1770 2022 2.043 963 98
9999 9897 9365 9010 8342 7948 7421 7166 6969

5902 11 3323 2oo6 2493 1448 1-82 614 .o06
9605 9319 8913 8262 7720 7067 6620 16227 6052

2203 3572 2084 2891 1737 1963 1069 916 133
9335 89--l 8391 7681 6959 6279 5704 5280 5070

"3623 1917 51351 1814 2354 1394 1356 599 557
8928 8756 7830 7161 6198 5468 4726 4312 4025

1400 .3127 1547 2616 1483 1667 912 693 64
9349 8145 7776 6409 5608 4481 '838 3171 3019

2675 872 2532 1098 1903 1064 765 174 182
8659 8748 6926 6396 4584 :3741 2530 2184 2054

-104 1762 1397  1909 621 703 -65 66 -69
19749 7691 7890 5244 4455 2141 1345 1252 1160

963 -914 16$2 -969 922 -681 -316 -219 -11
-8975 8975 6533 6705 2579 493 477 377 58'2

I y Scale Factor:.

h 10-6 inches

x

FIG. 19 HORIZDNTAL AiIJD VERTICAL DISPIACMOEMTS

I.
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a=a el =14.3 ksi C_

142 142 140 145 139 149 137 151 136

t138 136 140 139 147 141 152 143 153

129 130 132 142 143 153 150 159 152

115 119 129 137 150 153 163 162 167

{ 96 108 122 139 151 164 169 175 175

74 94 117 139 158 172 181 186 186

48 78 112 138 166 182 195 194 200

20 65 97 145 174 201 202 210 199

2 33 95 136 200 213 227 202 209-

14 12 38 161 217 267 214 208 196

-3 7 -.9 92 s54 260 214 197 196

I -- . 474 231 216 196 190 -- ---
I I.I

x Scale Factor:

10 ksi

y

FIG. 20 VERTICAL STRESSES
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-1 -4 -13 -24 -38. -50 -60 -67 -69
1 3 6 6 7 5 5 2 0

-1 -7 -14 -23 -32 -"4o -48 -51 -53
3 10 13 20 16 17 10 7 0

-3 -4 -14 -20 o 27 -35 -37 -42 -41
.7 14 25 23 28 20 18 8 0

2 -8 -10 -18 -25 -28 -34 -33 -37
7 24 27 37 29 29 18 11 0

-7 -1 -11 -16 -19 -27 -24 -31 -26
12 24 40 36 40 28 23 10 0

7 --9 -13 -19 -17 -24 -l7 -23
11 '35 3 48 38 35 21 12 0

*-1l 4 -7 -9 -9 -18 -7 -13 -4
15 32 50 9.5 47 31 22. 10 0

12 -4 7 -1 -10 2 -4 "12 8t13 36 46 59 43 33 16 5 0

-4 26 10 11 12 0 27 31 43
A 31 56 55 53 24 4 -3 0

7 10 59 30 5 44 55 72 6116 1 54 86 46 5 -16 -4 0

-3 -3 0 85 101 90 io8 84 98
3 2 1 84 56 -34 .- 6 -7 0

124 157 100 112 90
0 0 -, 0 0

II I
x Scale Factor: I

1i0-1 ksi I
y

FIG. 21 HORTIZON.AL.AND SHEAR STRESSES

[:



-76-
a el 14.3 ksi

f I

d = 1O0

15.3 ksi

[ 
--o.--18.6 

ksi

I' 

ksi

d If 

V

(on Centerline)

47. ksi

ILA. - - -

FIG. 22 VERTICAL STRESSES AT VARIOUS DISTANCES ABOVE HORIZONTAL CENTERLINE
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S= ael 14.3 ksiC' t t t t t t "•

I7,
7 3 5 d 1 0l .5 %

582

2.5X

556-

529

L Scale Factor: 10~ inches

FIG 25 VERTICAL DISPIACEMENTS AT VARIOIJS DISTANCES( ABOVE HORIZONTAL CENTERLINE
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I

a = el J 14.3 ksi
AI

41 42 44 49 51 57 56 62 59

1 40 41 45 4Q 52 53 57 55-\ 59

i 38 59 44 48 51 55 54 58 55

3 53 39 43 49 53 54/ 57 56, 58

" 30 34 45 49 54/ 57 57 59 57

20 35 •:1 51 55 58 60 58 6o

19 2Q 44 49 57 60 59 59 58

8 29 37 53 5a 6o 0 57 -54

3 18 40 48/62 63 5yr 49 47

5 1 2 6 4. 47 59-" 39

1 3 5 2 31 33 28

1lot 21 33 24 24

contours at 70, 65, 60, 55

FIG. 24 EQUIVALENT SHEAR STRESS EXPRESSED AS
A PERCENTAGE OF ITS MAXU-IM VAILTE
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a = 1.46 e =20.9 ksi

6o 61 64 71 74 84 82 92' 87

V 58 60 65 69 76 77 85 81 88

56 57 65 70 75 81 8o 85 81

47 57 62 72 77 80 85 82 -87

45 49 65 70 79 84 84 89 85

29 51 58 75 80 85 90 88 91

28 40 64 70 84 r88 89 91 89

12. 41 50 78 82) 90 9ý1 /87 86

6 28 57 63 /91/ 94 90 79 73

4 3 47 87 89,/ 100 78 59 -59

2 4 7 71 90 46 48 40

1- - 10• 37 45 33 39 j

Contours at 100, 95, 90, 85

FIG. 25 EQUIVALENT SHEa STRESS EXPMESSED AS
A PERCENTAC OF ITS MAXBMUM VALUE
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a=1.58 e 1 =22.6 ksi

64 66 69 77 79 91 89 i0o 92

63 65 71 75 83 83 92 88 95

6o 61 70 76 81 88 86 93 88

51 61 66 77 83. 87 92 90 95

49 53 70 76 85 91 92 97 94

31 56* 63 81 86 92/ 98 97 1.00

32 42 70 74 90 98 100 00

A \\. \,)I
13 45 54 85 88 97 100\ / 100 94

>
7 31 60 67 100 10 100 86 81

4i 4-i 53 91 96 1 8 64 65

2 5 9 77 10 100 51 53 44

C- - -oo- 50 4 o5 8 45

Contours at 100, 95

[! FIG. 26 EQUIVALENT SMAR STRESS EXPRESSED AS
A PECENTAGE OF ITS MAXMAtM VAlUE
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J, I

1.24-

I, - - - ,.S.n...L....... -

I.0

I 1

FIG. 27 PROGRESSION OF MASTIC STRAINING FOR

1 eoL 1
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6.5%.-

__T
Q

Cb

E = 30,000 ksi

v = 0.3

X= 10 inches

C ay, = 35 ks

2I

k 2  5036 (ks±)

CC

10

, - , , / / / / /i l /-

14%

on
Mass Points

FIG. 29 DIAGRAM FOR PROBLEM 5::
A PARTIALLY WADED HALF-SPACE

[/
[ j

LD
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a=a e 46.5 ksi

1276 1560 2108 .2754 3906 5138 8073 11076 12182 13350 13795 14300 14270
468 749 1037 1361 1678 2039 2388 1974 1550 1159 761 381 '0

-1173 1509 1963 2756 3692 5390 7548 9692 113 52 12130 12912 13122 13374
233 337 457 513 566 431 514 397 494 409 307 153 0

-1164 1456 1987 2695 3756 5262 6936 8675 10062 11134 11652 12128 12129
-17 -32 -1o6 -183 -369 -647 -565 -652 -373 -196 -108 -89 '0

1164 1487 1938 2713 3748 4953 6394 7751 8986 9878 10571 10848 11051
-220 -368 -517 -721 -961 -1043 -1215 -1015 -910 -632 -4Ol -195 '0

1196 1512 1993 2706 3563 4660 5776 6940 735 8780 9325 9717 9773
-390 -590 -816 -1054 -1215 -1418 -1361 -1367 -1105 -894 -583 -294

1229 1517 1989 2582 3382 4238 5214 6127 6991 7673J 82o6 8486 8622
-486 -738 -989 -1197 -1418 -1472 -1558 -1397 -1275 -968 -686 -339 '0

1235 1514 1901 2459 3084 3845 4600 5381 6064 6657 7079 7360 7433
-- 542 -810 -1050 -1288 -1418 -1558 -1506 -1472 -1240 -1026 -689 -362 '0

1225 1448 1808 2240 2798 3380 4025 4629 5201 5670 6032 6248 6328
-557 -817 -1070 -1251 -1429 -1466 -1506 -1370 -1240 -964. `692 -345 '0

1165 1367 1640 2022 2440 2934 3422 3919 4361 4740 5025 5202 5264
-537 -797 -1009 -1213 -1317 -1413 -1367 -1317 -1123 -926 -630 -332 '0

1079 1227 1462 1739 2089 2450 2843 3214 3559 3851 4069 4,211 4252
-503 -727 -943 -1090 -1226 -1253 -1269 -1160 -1041 -816 -584 -293 0

-943 1065 1227 1451 1694 1976 2255 2534 2788 2999 3166 3261 3303
-439 -650 -817 -973 -1053 -1116 -lO82 -1032 -885 -725 -496 -26o 'o

-776 853 977 1120 1299 1484 1682 1871 2042 2192 2298 2375 2390
-368 -530 -685 -791 -882 -903 -906 -832 -741 -584 -416 -210 '0,

561 614 682 776 878 995 1111 1225 1331 1415 1487 1523 1544
-268 -397 -500 -593 -643 -667 -659 -624 -538 -438 -302' -157 'o

307 327 362 400 449 498 550 601 646 687 713 735 737
-151 -219 -283 -328 -365 -375 -374 -345 -306 :-242 -171 -872 '0

7- 7 -7 7 7, 7 7-
I x Scale Factor:

V 10-5 inches

y

FIG. 30 HORIZONTAL AND VERTICAL DISPIACMMTS
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y 1l.02 e1 = 47.4 ks i

4,6- - 762 1056 138 1710 ý2079 2455 2018 1583 1194 77-,391303 1592 2150 2810 3984 5243 8234 11304 12433,13634 14.94 14613, 14585

S5C342 14 521 575 437 51,. Zff 507 1 3 5 4
1198 1540 2003 2812 3767 5415 770P 9888 11589 12387 13194 13415,13675

-18 -35 -110 -190 -t, -64 -582 -69 -388 -197 --1 -36;- 10
1188 ý1487 2028 2749 3831 5,. 7076 452 1o268 113,72 i1O6 12403112406

-225 -377 -531 -735 -95- -100-06 98-5 -206 0
11W 1518 2029 276• 3824 5.054 6524 7910 9171 10082 108A 11096' 11313

~39 I 86-1074 -1245 -1454i ý-199 -Ao6 -11454'931 -626 -306, 61222 1544 2035 2762 3636. 4754 5$ 6 81l 896c 9522ý. 953 300C5

-498 -756 -1013 -1225 -1452. -1510 -1549 -1440 -315 -1i11 -73 10 •
1255 1549 2031 2636 3452 4327 53,22 6257 7136 830 8655 8825

--555 -&29 -1074 -131- -14% -ý-i596 -1546 -1512 -123 -lo62 -717 -393 o
1262 1546, 1942 2510 3150 3925 4698 5494 6194 67,97 7224 7500 7,556

-570 -835 -1ý4 -1280 -146f0 -1502 o 1543 -1.47d -1273 ,950 -714 -347 10
1251' 1479 1847 2238 2857 3452 4110 472§ 5312 5788 6155 6362 16643ý

'-549 815 1032 -1240 -1348 -1446 -14@b -1348 -1150 -p49 -6402 '340 0
1191 !597 1676 2065 2493 2997 3496 4002 4452 4838 5123 5298 5359

-514 -743 '-%4 -1115 -1253 -1282 -iPt1i86 -1663 -831 '596 -2§t 1b
1103 1254 1494 1777 213, 2503 2904 3282 3634 392L 4147 4290 I4329

-448 -664 -835 -994 -1076 -114o -1105 -1053 -92 -746 -504 -265 0
964 1089 1254 1482 1731 2019 ?303 2588 2845 3058 3227 3322 336

-376 -542 -70o -808 -o1 -522 -925 -848 -755 -594 -423 -P13 0
793 872 998 1144 1327 1516 1717 1909 2084 2236 2342 2426 2435

-273 -406 -511 -605 -656 -691 -67 -636 -548 -446 -307 -160
573 627 697 793 897 1016 1134 1250 1358 1443 1516 1551 '1573
-154 -223 -289 -335 -372 -382 -381 -352 -311 -246 -174 -88 0l

314 334 370 409 458 5o8 562 614 659 701 727 750 '751

Scale Factor:

10-5 inches

I.- y

FIG. 31 HERIZONTAL AND VERTICAL DISPLACEMENTS

[
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=1.04 el - 4813 ksi

482 771 1070( 1404 1734 2113 2475 2084 158 12-54 778 413 I0
1323 1618 2185 2861 4052 5346 8379 11553 12691 13955 14431 14960' 14926

236 ý44 464 5 2- " 5715ý 43'4' 45 586 54ý '-8 544 .150 b
1217 1565 2038 2860 3.836, 5511 7851 10080 11856 12665 13521 13719 14013

- t2d -42 -120 -205 -400 -692 '-619 -701 -447 -179-137-29 0
1208 1512 2063 2798 3902 5467 7216 9022 10484 11664 12169 12726 12682

-235 .-390 -551 -766 -1019 -1113 -1292 -1107 -988 -701 -.97 -213 b
1209 1546 2064 2821 ,3893 5156 6.44 8080 9335 10293 1lll0 11338 1127

-411 -623 -862 -1131 -1288 -1500 -1458 -1458 -1205 -1000 -655 -3161 0
1245 1572 2075 2812 3711 4.73 6022 7216 8267 9122 9722 10238J10230

-512 - 777 -1041 -1063 -1494 -1562 -1648 -1497 - .372 -lo6O -816 -461 0
1279 1580 2069 2691 3518 4419 5426, 5386 7277 7,988 8537 ý84o '9053

-570 -851 -1104 -1354 -1497 -164o -1557 -1562 -1%27 -110 -751 -4.3 0
1287 1576 1983 2560 3216 404 4796 507 6317 6939 7356 7635 '7695

-584. -858 -1122 -1316 -1506 -1546 -1586 -1449 -1318 -1617 -745 -354 0
1277 1511 1884 .2337 2916 3525 4196 4824 5424 5900 6271 6474 16544

-563 -834 -1059 -1270 -1383 -1482 -1437 '1365 -1177 -978 -651 -351 0
1216 1926 1712 210.8 2546 3o61 3568 4087 454o 493) 5216 5389 '54.52

-525 -761 -986 -1142 -1262 -1313 -1328 -i212 -1090 -846 -611 -301 0
1127 ý1281 1526 1A15 2179 2555 2966 3348 3707 4002 4222 4365 4402

-459 -678 -855 -1016 -11b1 -1166 -1129 -1077 -919 -756 -512 -271 0
985 1112 1281 1515 1767 2062 2350 12641 2900 3116 3286 3379 '3423

-ý84 -5'54 -715 -826 -520 .942 -944 -864 .771 -604 -432 -216 o
811 391 1020 1168 1356 1547 1754 1947 2124 2277 2384 2463 2476

-a 14i -522 -618 -70 -7'0" -685 -69-517 -455 -311 -6
586 641 711 811 9,15 1038 1157 1276 1384 1470 1544 1578 '160

-157 -228 -295 -342 -379 -390 -389 ý.58 -317 -250 -177 -897 0
320 392 378 417 468 519 574 625 671 714 740 763 '764

Sx Scale Factor:

Sv 10-5 inches

. FIy

FIG. 32 HORiZONTAL AND VERTICAL DISP~hCEISEENTS
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I;I
1. 06 49.2 ksiI - - - I -

479 765 1O66 1399 1737 2116 2514 2182 1604 1294 789 427 0
1333 1630 2212 2892 4111 5421 8514 11855 13032 14363 14796 15397'15314

228 332 448 504 549 410 -5 320 576 384 36o 151 0
1226 1582 2059 2900 3885 5597 7974 10312 12229 12995 13932 14081' 14437,

-32 -62 -147 -242 -446 -759 -705 -798 -481 -163 -146 -23 0
1221 1528 2092 2835 3964 5547 7365 9164 10750 12044 12493 13127' 13027

-251 -.417 -587 1-814 -1082 -1193 -1379 -1198 -1099 -722 -396 -227 10
1224 1568 2094 ý2867 3954 5254 6763 8222 9502 10579 11468 11656 12008

-431 -652 -904 -167 -1356 -1579 -1544 -1560 -1302 -1110 -677 -321 0
1264 1597 2110 2860 3779 4934 6130 7555 8-403 9308 10011 10574 10515

-532 -810 -1084 -131$ -1560 -1636 -1736 -1584 -1480 -1170 -912 -4o8 o

1302 1609 2107 2742 3587 4502 5535 6500 7,421 8123 8730 9096 9346

-591 -882 -1147 -. 406 -1557 -1712 -1698 -1649 -1409 -1217 -838 -509 0
-1313 1608 2022 2613 3279 4088 4888 5722 6436 7071 7479 7813 '7911

-603 -887 -1160 -1362 -1556 -1604 -1655 -1512 -1390 -1078 -817 -4011 0
- 1304 1542 1925 2384 2980 3595 4286 4919 5534 6008 6386 6577 I6644

-581 -860 -1093 -1312 -1428 -1535 -1487 -1441 -1222 -1026-679 -365 0
1243 1459 1749 2156 2599 3129 3640 4174 4628 5029 5305 5468 '5523

-541 -783 -1015 -1176 -1321 -1352 -1371 -1248 -1128 -869 -- 30o- 308 0
1153 1310 1561 1854 2229 2609 3031 3414 3782 4074 429o 4426 4462

-471 -697 -878 -1044 -1129 -1198 -1157 -1107 -939. -775 -521 -277 0
1008 1139 1310 1550 1805 :2109 2399 2696 2954 3171 3337 3427 '347o

-394 -568 -733 -846 -943 -963 -967 -882 -788 -613 -440 -219 0
831 911 1044 1194 1388 1579 1792 1985 2164 2316 2420 2498 '2510

"-286 -424 -534 -633 -684 -721 -698 -662 -565 -462 -314 -165 0
600 657 727 830 935 1061 1180 1301 1409 1494 1567 16o0 '1624

-161 -233 -302 -349 -388 -397 -396 -363 -322 -253 -179 -904 0

328 350 387 426 479 529 586 637 683 725 751 774 '774

-7 7 7 ~7 7 70 7. 7 7 717 7
x Scale Factor:

10"5 inches

y

FIG. 33 HR~fIZONTALI AND) VERT]ICAL DISPLAGMETS
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r el 46-5 ksi

-2 4 -4 l ý10 - -nj4 391 475 455 4ý7 462 465

4 1 9 10 o 32 1•8 306 433 453 456 462 462

8 13 21 35 9 5F 180 M6' 370 431 444 4ý3 456'

18 26 38 73 121 '1§4 27'2 344 32 426 43' 444'

32 41 64 155 144 201 264 322. 370 358 41.9 426~

44 61 81 116 156 206 250 367 ý47 379, 397 407~

61 75 99 19 16T 200 253 295 33i 358 577 .386

73 91 l11 141 174 211 24§ 285 317 342 359 367 ,

98 101 123 149 180 2.12 245 277 305 327 342 350'

'98. 113 132 156 183' 213" 242 270 2 5 314 328 335

109 121 140 161 187 213 239 264 286 304 316 323,

117 130 14.6 167 119 213- 236 258 278 294 30!5 311

126 137 152 170 191 212 234 253 2T2 285 295 301,

134 145 158 17-5 192 212 230 249 264 276 285 292

7 7 7' 7 7 7 7 =' 7 71 7 7,'7 7-

r. x bcale Factor-

I-i0 ks

y

FIG. 314 VERtI=IAL STREISSES
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Sa =46.5 ksi

- 64 66 64 56 42 -37 -178 -257 -273 -282 -286 -288T
-2 0 1 7 7 71 71 7 8 1 2 0

13 70 -8 -27 -82 -117 -89 -124 -179 -198 -212 -216
0 3 14 21 64 127 128 65 22 16 4, 3

-30 -42 -55 -85 -100 -92 -104 -95 -110 -138 -149 -1571
5 16 28 56 1o0 119 120 99 57 28 17 3

-65 -73 -89 -98 -99 -102 -84 -87 -87 -94 -1o6 -lo9g
14 27 47 75 97 117 117 97 74 45 22 9

-88 -96 -101 -1-04 -104 -91 -88 -74 -73 -73 -75 -78
21 36 57 76 98 106 107 96 74 52 30 8

-lO4 -107 -108 -107 -99 -94 -78 -73. -63 -60 -59 -59
25 42 58 . 77 88 98 96 87 72 52 31 11

-113 -113 -112 -106 -101 -88 -81 -67 -61 -53 -51 -49
28 42 58 70 82 86 86 78 65 49 30 10

-117 -116 -1ll -107 -96 -90 -76 -69 -58 -53 -47 -46
27 41 52 65 72 76 75- 68 58 43 27 9 1

-117 -114 -111 -103 -97 -86 -79 -67 -61 -53 -50 -47
26 37 49 57 64 66 65 59 50 38 23 8,'

-114 -112 -106 .102 -94 -88 -78 -72 -63 -59 -54 -52
24 35 43 51 55 57 . 56 51 43 32 21 7

-- 18 -105 -103 -97 -94 -86 -82 -74 -70 -6. -63 -61
22 31 39 45 49 50 49 44 37 29 17 6

-98 -98 -95 -95 -90 -89 -83 -82 -77 -76 -73 -73
21 29 35 41 44 45 44 40 34 25 16 5

-87 -86 -88 -87 -89 -88 -90 -88 -89 -88 -89 -88
S21 29 35 40 43 44 42 38 32 24 15 5I I

67 -73 -75 -81 -84 -91 -94 -100 -103 -107 -108 -110131 38 43 46 46 44 40 34 25 16 5

x .Scale Factor:

10" ksi

y

Fi



----------- ~

-90- 46- 5 : ksi T

f f d= 2.-5. -ksi

-45.6
dI.5 ksi

dt(O5 -32.3
ksi

FIG. 36 VERTICAL STRESSES AT VARIOUS, DEPTHS0
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FIG. 37 VERTICAL DISFIACD4KNT AT VARIOUS DEPT2HS
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a p9= el 2-L 6 .5 ksi I

18 20 17 20 10 42 73 62 52 53 50 51'

5 3 8 15, 39, 74 9-9 4 -72 70'

715 19 35 57 7 5\86 .. 87 86

16 20 3o 44 56 72 85 9 97299 96- - 95

20 26 34 43 57 68 79 89 .95 98 lo0 0 0 lo0

t23 27 54 44 53 65 75 85 91 96 98 20.~o

t 22 26 33 40 51 60 70 79 86 91 95- 97

20 25 30 38 47 56 65 73 81 86 90. 92'

17 21 28 35 43 52 60 69 75 81 85 87

14 20 26 33 41 48 57 64 71 75 79 81'

13 18 25 31 39 46 53 6o 65 70 73 75'

13 19 25 31 '•8 44 50 55 61 64 67 68'

17 22 27 33 58 43 48 52 55 58 6o 61a'

25 27 3,2 36 4o 44 47 48 50 51 51 52'

FIG. 38 E9(IVAI•eT sMR STubs E[PRESSED AS A
1PDITAGl OF T-Ts, 4AX324t. VAWE
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S . el 49.3 ksi c_

Pi

18 20 1' 20 10 43 81 67 55 56 53 53:

14 20 37 60 77 100 95 93-- 90-1

17 22 33 46 59 76 90 96 0 1001 00 /100.- 100

S22 28 37 47 4 1'3 83 93 99 100 /100

25 30 37 47 s7 7~~9- 88 9 5 iQOiW 100'

24 28 36 44 54 64 7' 84 2\ 97 7 100

K 22 26 32 4-1 50 60 70 79 87 2 98 99'

19 23 30 38 47 56 65 74 81 87 90, 92'
S~90

15 2 27 35 43 52 6,1 68 76 8- o 84- 85-' 85

14 20 27 34 41 49.57 64 69 74 77. 79'1

14 21 27 - 34 40 47 54 59 64 68 71 72

18 23 29 35 41 .46 51 55 58 61 63 64'

24 29 34 39 43 46 49 51 53 53 54 54

7 *7, -- :, ~ ~ -~ 7 /1

FIG. 39 EQUIVAIENT SHEAR STRESS EXPRESSED AS A
PIMP0NIXAGE OF ITS MAXEM VALJUE
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FIG. 4o PROGRESSION OF PLASTIC STRAINING FOR
1.00%1e, 1. 0 2%1, 1.0 4 %e, 1.06%e
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